
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 21 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Reviews in Physical Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713724383

Classical path method in inelastic and reactive scattering
Gert. D. Billinga

a Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, Copenhagen, Denmark

To cite this Article Billing, Gert. D.(1994) 'Classical path method in inelastic and reactive scattering', International Reviews
in Physical Chemistry, 13: 2, 309 — 335
To link to this Article: DOI: 10.1080/01442359409353298
URL: http://dx.doi.org/10.1080/01442359409353298

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713724383
http://dx.doi.org/10.1080/01442359409353298
http://www.informaworld.com/terms-and-conditions-of-access.pdf


INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1994, VOL. 13, No. 2, 309-335 

Classical path method in inelastic and 
reactive scattering 

by GERT D. BILLING 
Department of Chemistry, H. C. Brsted Institute, 

University of Copenhagen, 2100 Copenhagen, Denmark 

The semiclassical (classical path) method has over the years probably been the 
most commonly used approximate method for describing many molecular 
d ynamical processes in inelastic, non-adiabatic and recently also in reactive 
scattering. Here an overview of the development of the theory is given. Its 
connection to various other approximate dynamic theories such as the eikonal, 
time-dependent self-consistent field, Gaussian wave packet and the Feynmann path 
theory is discussed. Various numerical and technical schemes for solving the mixed 
quantumdassical equations through algebraic, state and grid expansion methods 
are also given. 

1. Introduction 
The semiclassical or the classical path (CP) method, which it is sometimes called, is 

as old as quantum mechanics itself. In this method, classical and quantum mechanics 
are mixed in such a manner that the solution of a given collision problem is facilitated 
compared with the exact quantum solution. Early applications (Bohr 1948) of this 
approach in electron capture theory treat the internuclear motion classically and the 
electronic motion quantally. This separation was natural because of the small mass of 
the electron compared with that of the nuclei. Later the approach has been used to treat 
molecular energy transfer problems. Here the relative translational motion was 
approximated by a classical trajectory and the time-dependent Schrodinger equation 
(TDSE) solved for the internal states. Often a simple straight-line trajectory was taken 
or at least a trajectory which was not coupled to the internal motion was assumed. 
Later came attempts to couple the trajectory to specific quantum transitions, that is to 
invoke quantum-mechanical boundary conditions. Also methods where not only the 
relative motion but also part of the internal motion were treated classically have been 
suggested. For problems concerning non-adiabatic electronic transitions it was also an 
obvious choice to quantize the electronic degrees of freedom while treating the 
remaining within a trajectory approach (for a recent review see Sidis 1990). However, 
only recently has there been attempts to extend the ideas to reactive scattering and to 
combined reactive-non-adiabatic problems. We shall in the present paper give a 
description of how far the CP method has been pushed today. The paper is organized as 
follows: 6 2 considers the CP  method within the first-order perturbation treatment of 
the inelastic transitions. Comparison with quantum expressions suggests the introduc- 
tion of a mean velocity approach. The same is true for the multichannel ‘derivation’ of 
the coupled CP  equations given in 9 3; 5 4 introduces a classical treatment of some of the 
internal degrees of freedom and an algebraic approach to energy transfer problems in 
the polyatomic molecules; in 94 the CP theory is derived from first principles by 
invoking a self-consistent field (SCF) approximation and a variational determination 
of the initial momentum. Also the Feynman path (FP) formulation can be used to 
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310 C. D. Billing 

define self-consistent paths. This is discussed in 9 6; 9 7 shows how the CP  method can be 
introduced in reactive scattering by using hyperspherical coordinates, that is coordi- 
nates which treat the various rearrangement channels evenhandedly. Also non- 
adiabatic transitions give rise to problems, which calls for specific methodology. Some 
of these are discussed in 5 8. The introduction of grid methodology has been the latest 
development of the method. Grid methods are convenient to use for dissociative and 
tunnelling degrees of freedom. Unfortunately the method is restricted to only a few 
dimensions but combined with a classical treatment of some degrees of freedom the 
methodology has many potentially interesting applications. The last section is devoted 
to a summary and discussion of future lines of development. 

2. First-order theories 
First-order theories for inelastic transitions were popular in the 1950s and 1960s, 

and simple scaling relations for the scaling of rates with the vibrational and rotational 
quantum numbers are based upon these expressions. In the CP  evaluation of the first- 
order transition probabilities, one assumes a simple path. Consider for example the 
collision of two diatomic molecules and not too small impact parameters. Here a path 
of the type 

R 2  = b2 + (vt)’ (1) 
has been assumed (figure 1). R is the centre-of-mass distance, b the impact parameter 
and v the velocity of the relative motion. At large impact parameters the inelastic 
transitions will mainly be governed by the long-range multipole interaction. Here one 
obtains the following first-order expression for the transition probabilities as (Rabitz 
and Gordon 1970, Nyeland and Billing 1976) 

4 
h 2 V 2  

P ,  = ~ (2; + 1)(2j; + 1) 

where Qli is a multipole moment ( I i  = 1 for a dipole, 2 for a quadrupole, etc.), 1 = I ,  + Iz, 
K ,  is a Bessel function and x = bw/u. The energy mismatch for the transition is given as 

Figure 1. A simple straight-line trajectory is often assumed in the CP method. 
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The classical path method 311 

hw=IE,.-E,I, where M is a collective quantum number a=(n l j ln z j2 ) .  The above 
expression is valid for impact parameters larger than a critical value b, which depends 
upon the transition under consideration and the coupling strength (for example Billing 
1987a). At smaller values of b (the close-coupling region) one can for example introduce 
statistical assumptions or eventually use state expansion methods (see below). The 
advantage of using this simple theory at large impact parameters is that the 
contribution to the cross-section from long-range forces can quickly be estimated. Thus 
we have 

At small impact parameters the first-order treatment of rotational transitions rapidly 
breaks down and hence first-order theories have mainly been used to estimate 
vibrational or non-adiabatic electronic transitions, where the larger energy mismatch 
will lead to smaller transition probabilities and hence it is expected that a first-order 
approach is applicable. 

The first-order theory for vibrational excitation processes was based on a collinear 
collision assumption and a simple trajectory for the relative motion 

exp [ - aR(t)] = sech’ (iaut), (4) 
that is an exponential interaction potential (C exp (- arAB)) with a steepness parameter 
M was assumed, that is 

where C is a constant, r the vibrational coordinate and 1 = mc/(me + m,) for a collinear 
A + BC collision. The transition probability obtained with this simple (for example 
Rapp and Kassal 1969) theory is 

V(R, r )  = C exp [ - a(R - h)], ( 5 )  

where m and n are final and initial vibrational states respectively, Em is a 
vibrational energy, p is the reduced mass, U,, is a transition matrix element 
Urn, = (dm1 exp (alr)14,), $,is a vibrational wavefunction and u, is the initial velocity of 
the relative motion: 

ipu; = E - En. (7) 

It is interesting to compare the first-order CP expression for the transition probability 
with the corresponding quantum-mechanical expression (Jackson and Mott 1932, 
Schwartz et al. 1952) 

1 6 ~ ~ p ~ ( E , , ,  - E,)2Uf, sinh (27tk,/a) sinh (2ak,/a) 
h4a4 [cosh (2nk,/a) -cosh (2nk,/a)I2’ Pmn = 

Under the assumption that 2nkn/a>2nk,/a>> 1 the last factor can be simplified to 

Under the same conditions the last factor in the CP expression (6) becomes 
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312 G. D. Billing 

that is we obtain identical expressions if the initial velocity v, is substituted by the 
arithmetic mean value 0-5 (u,+u,) for the transition in question. If this velocity is 
introduced in equation (4) we have the so-called symmetrized trajectory, that is each 
quantum transition n+m has its own ‘classical trajectory’. 

Although various corrections (e.g. anharmonic or ‘diagonal distortion’ corrections) 
to the above expressions were known and discussed in the mid-1960s the paper of 
Secrest and Johnson (1966) where the above collision problem was solved exactly 
essentially showed that first-order theories were unreliable. An area where first-order 
expressions for the transition probability has had some success is within non-adiabatic 
electronic transitions where the transitions often are sufficiently localized to make a 
local linear trajectory approach sufficiently accurate. The most celebrated result is the 
Landau-Zener expression for the non-adiabatic transition: 

where v is the velocity with which the crossing point (R,) is passed and V , ,  is the 
adiabatic splitting at R,. The above expression can be obtained using a CP model, 
quantum (Child 1974) or a wave-packet approach (Henriksen 1992) with a simple 
linear approximation of the diabatic potential energy curves: 

K i  = - F,(R - RJ. (12) 
First-order theories can be used to give a qualitative impression of the magnitude of the 
transition probabilities and their dependence of physical parameters as mass, slope of 
the potential, energy gap, etc., for single quantum transitions. For multiple quantum 
transitions and high-accuracy work, one has to use methods which involve more 
numerical work, methods which include higher-order terms and interference effects 
between the various channels. Such methods are the so-called state expansion methods, 
where the wavefunction is expanded in a suitable basis set. 

3. The eikonal method 
We have seen that agreement between the CP and the quantum first-order 

probabilities can be obtained if the condition k,/ct>> 1 is fulfilled. In this limit we also 
have &kn + k , ) ~  k,, that is the CP expression is obtained as the high-energy limit of the 
quantum-mechanical result. The argument is, however, based upon first-order 
perturbation theory, which may not be valid in the high-energy limit. Therefore 
attempts were made to derive the coupled CP equations from the corresponding 
quantum-mechanical equations. This is possible by invoking the eikonal 
approximation. 

The eikonal method owes its name to short-wavelength treatments in optics and the 
approximation involved can be illustrated by considering the time-independent 
Schrodinger equation 

h2 d2 

Introducing Y(R) = A(R)  exp (iS(R)/h) we obtain 

A”-A(S’)2+Ck2- U(R) ]A  =o, 
2A‘S + AS” = 0, 

(13) 
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The classical path method 313 

where the prime and the double prime denote first and second derivative respectively. 
The fundamental eikonal approximation A" = 0 can be introduced if 

A" -<<k2, 
A 

where k2 = 2mE/h2. With this approximation we obtain 

(S')2 = k2 - U(R), (1 7) 
where U(R)  = 2rnV(R)/h2. Considering now the multidimensional situation we have the 
following Schrijdinger equation: 

Introducing now cylindrical coordinates (figure 2) we obtain 

F o r  an A + BC system the total wavefunction is expanded in vibrational-rotational 
states (g5,jqm) of the diatom as 

where M = ujmM is a collective quantum number and r is the BC bond distance. From 
the Schrodinger equation we then obtain 

@a = A ,  exp ( ksa) 

f" 

Figure 2. Introduction of cylindrical coordinates for derivation of the eikonal equations. 
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3 14 G. D. Billing 

use the eikonal approximation V'A, = 0 and that 

= E - E v j -  (al%tla>, (23) 
where the angular brackets indicate integration over r, i space and where la) = 4ujqm. 
This finally leads to the following set of coupled equations: 

In order to obtain the T-matrix elements we use the fact that (for example Levine 1969) 

z,,, = ( $ v . j .  l'& exp ( -ikar - R) I qntl Y ) ,  (25) 
where the angle bracket now denote integration over R, r space. Introducing the above 
equations we finally obtain 

z,,, = (- i)'=- J; dP P J M . ( k , P  sin @CZl(P9 @+Z,(P, m (26) 

where 6 is the scattering angle and 

I 6) = 1; d Z  exp t+- ik,. cos 6 Z 

Z2(p, 8)= 1 r d Z e x p  ($- ikg, cos 6 Z (a1 cntla> -,+-)Aa+-], h 2 ~ , 2  ih as, h2 aA,  
2PP 2PPaP 2PP a P  

(28) 
where we have used that k ,  =(k,, sin 6, 0, k,, cos Q), R = ( p  cos 4, p sin 4 , Z )  and 

J,(z) ='-" J'd4 exp (iz cos 4) cos (n4). 
K O  

(29) 

Thus the 4 dependence has been integrated out, but the 8 dependence is retained. The 
scattering amplitude is then obtained as 

and the S-matrix elements (Levine 1969) as 

S,,,, = am,, + 2ni z,,,. (31) 
The above equations can be simplified by neglecting the p dependence of A ,  and S,, that 
is they depend only parametrically upon the initial p value (Flannery 1969, Byron 1971, 
Micha 1983). Thus the coupled equations (24) simplify to 
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The classical path method 315 

This set of equations can be rewritten in terms of a time-dependent theory by 
introducing a trajectory, such that 

dAa - dAadZ 
dt d Z  dt (33) 

and 

Sap - S ,  = dZ (Pas - Pa) s 
= sd t (Ea+  K,a-E,,- K,,a,), 

where we in the last equation have introduced 

(34) 

but in order to convert equation (32) to the usual C P  equation we have to introduce 
dZ/dt = v, and hence this ‘derivation’ of the time-dependent CP equations from the 
time-independent equations can only be valid if v a z u a , ,  that is in the high-energy limit. 
This conclusion is then the same as that obtained when deriving the CP equations from 
the time-independent Schrodinger equation (for example Delos et al. 1972, Delos and 
Thorson 1972 and Wartell and Cross 1971). This has also led to the statement that the 
CP equations are valid only in high-energy limit where this requirement is met. 
However, it is possible as we shall see below, by introducing a variational approach, to 
extend the region of validity considerably. 

4. State expansion methods 
As mentioned above the paper by Secrest and Johnson (1966) essentially showed 

that first-order approximations to the transition probability for vibrational excitation 
of diatomic molecules were of limited value, except that they of course provide some 
qualitative insight in the processes. However, for instance scaling of the probabilities 
with vibrational quantum number, the importance of the multiquantum and tran- 
sitions in excited molecules could not be predicted. Here we need to expand the 
wavefunction for the system in many target states and to solve a set of coupled 
equations within either the exact quantum or the semiclassical framework. Thus 
treating the relative motion classically the wavefunction for the quantum, that is 
internal degrees of freedom are expanded in a complete set of states, defined as 
eigenfunctions to part of the Hamiltonian, that is 

$(R.  r,  t) = p , ( W ( r ) .  (36) 
n 

In order to couple the classical motion R(t) to the quantum system it was suggested 
(Rapp and Kassal 1969) that the Ehrenfest averaged potential should be introduced, 
that is the classical equations of motion should be solved with the potential 

(37) KfAK t) = ( $ 1  V R ,  r, t)l$>, 
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316 G. D. Billing 

where the angular brackets indicate integration over the quantum coordinate r. 
However, the results obtained using this approach were not satisfactory (for example 
Billing (1973)) but, if the above-mentioned symmetrization of the initial velocity was 
also introduced, the results were improved drastically (Billing 1975a). Although this 
approach (the symmetrized Ehrenfest approach) was later tested on a number of 
systems for inelastic vibrational as well as rotational and rotational-vibrational 
transitions it was based upon an ad-hoc prescription until it was shown that it can be 
derived from first principles (see $5). 

In the CP method, one solves a set of coupled first-order differential equations in the 
expansion coefficients compared with a set of second-order differential equations in the 
exact quantum-mechanical approach. Although the first-order differential equations 
are solved without any numerical problems the method is limited to about 1-2000 
states at  present. For three-dimensional treatment of collision problems and especially 
for molecale-molecule scattering problems the number of energetically accessible 
target states soon runs into the thousands or millions. Hence it is important to 
introduce some techniques which can also handle this situation. Within the CP 
framework, two suggestions have been made in order to facilitate the situation, namely. 

(a) that the rotational motion and eventually some of the vibrational motions of 
the molecule(s) should also be treated classically and 

(b) that an operator approach should be introduced for the vibrational degrees of 
freedom. 

4.1. Classical treatment of rotation 
If the rotational motion is included by classical dynamics, the quantum problem 

reduces to that of collinear collisions and hence both atom-diatom and diatom4iatom 
collision problems are easily handled (Billing 1984a, b). Thus for an A + BC problem 
the Hamiltonian is divided in the following way: 

where m is the reduced mass, u(r) the intramolecular potential, r the bond distance, re 
the equilibrium bond distance and j ( t )  the rotational angular momentum of the BC 
molecule. The reduced mass of the relative motion is p, the centre-of-mass distance is R 
and the angle between rand R is y. As before, the effective potential, which couples the 
quantum and classical degrees of freedom, is obtained by averaging over the quantum 
coordinate r, that is 

The wavefunction $ can be explained in eigenfunctions to fi, or eventually on a grid 
(see below). The eigenstates depend upon time through j(t),  giving rise to rotational- 
vibrational coupling. If the wavefunction is expanded in eigenstates, we have to solve a 
set of equations for these expansion coefficients (transition amplitudes) and the 
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The classical path method 317 

classical equations of motion for the rotational and translational motion simulta- 
neously (for further details see Billing 1984a, b). From the amplitudes we obtain partial 
cross-sections as 

where J is the total angular momentum, and n, andj, are initial vibrational quantum 
number and rotational classical action. The wavenumber is obtained from 

2p(E - Eni - E j i )  
h2 k:jji = 

The probability Pa, is obtained as 

(43) 

where N is the number of trajectories, a!! is the amplitude for a transition from 
quantum state ni to quantum state n,, under the ith trajectory and CI = (ni,ji, Ii). For the 
rotational motion, ‘box’ quantization is introduced, that is the sum is restricted to 
trajectories withj(t+ co) in the interval [j,- S;jj +S], where 6 = 1 for homonuclear and 
3 for heteronuclear molecules. The scattering angle is obtained from the classical 
trajectories, that is 

where P, and Px are the initial and final momentum vectors respectively. Thus we can 
obtain an expression for the differential cross-section as 

sin 6dGni’i4nf’f =C’(2J + l ) ~ ~ ~ ~ ~ + ~ ~ ~ ~ ,  
dS2 J 

where the prime indicates that only trajectories with scattering angle in the interval 
[O-tAO; O+iA6] are used. The energy U in the above equation is defined as the 
‘classical’ energy, that is the sum of translational and rotational energy in this case. The 
‘symmetrization’ or detailed balance correction is then made in a manner similar to 
that introduced in the collinear collision case. This symmetrization corresponds to 
defining the total energy E in terms of the classical energy U by the following equation 
(Billing 1984a): 

We notice that the smallest allowed value of the ‘classical’ energy is min U =%En,. - Eni) 
for which E = Enr. The above expression (46) for the differential cross-section is given as 
the classical ‘elastic’ potential scattering differential cross-section multiplied by a 
quantum probability for a given final state. At small scattering angles this expression is 
expected to fail (McCann and Flannery 1973). Here the multichannel eikonal 
treatment, which, as we have seen is very much related to the CP method, can provide a 
better description of the differential cross-section. 
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318 G. D. Billing 

The basis functions in which the total wavefunction are expanded will often depend 
parametrically on the classical variables, that is the basis functions are obtained as 

‘o@> 4; P ,  Q)4n(4;  P,  Q) = En(P7 Q)4n(4; P,  Q), (48) 
where P, Q denote classical and f j ,  q quantum variables. The coupled equations for the 
expansion amplitudes in 

$ = C4n(q; P, Q)an(t) exP (49) 
n 

are then 

where we have used that 

(4; p 3  Q) + 

The time dependence of the basis functions should also be included when deriving the 
equations of motion from the Ehrenfest averaged potential: 

Heff = <$IW), (53) 
yielding the equations of motion 

A large reduction in the basis set size is also obtained by treating the rotational 
projection states classically but quantizing the rotational angular momentum (for 
example Billing 1986, 1987a). 

4.2. The operator approach 
We have seen that the eikonal and the CP approach leads to a set of coupled 

equations 

where W,, = Sdt ( E n  + Vnn) and A,  = al,. The index n only runs over quantum states of 
that part ofthe problem which is treated quantally. Equations (56) can be expressed in a 
matrix form as 

The solution can formally be written as 

w, to) = exp CW, t O ) l ,  
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The classical path method 319 

where A =&Ai and 

A , = A  I t  dt‘ f ‘  dt“ V(t’), V(r”)], etc. 
2fi to to 

For closed Lie algebraic groups of operators ( H j }  (Miller 1968) we can introduce the 
operator representation of the evolution operator as 

u(t, to )  = n ~ X P  [@At, t,WjI, (61) 
i 

where the functions aj are obtained by solving a time-dependent matrix equation of the 
order M x M ,  where M is the number of operators. Thus, for systems where the 
Hamiltonian is of the type 

where u: and uk are the creation and annihilation operators for mode k, andf; and 
F i t  are the linear and quadratic forces respectively, it is possible to use this ‘operator’ 
approach to solve the TDSE algebraically (Pechukas and Light 1966, Billing 1980). 
This has been the basis for a semiclassical treatment of energy transfer in polyatomic 
molecules (Billing 1984a), molecule surface scattering (Billing 1982) and the reaction 
path approach to chemical reactions (Billing 1984~). The operator solution, that is the 
solution within the harmonic approximation, can serve either as an approximate but 
often realistical model for a large system or as a zeroth-order approximation on which 
the ‘true’ anharmonic can be expanded. Higher-order terms are then included by the 
perturbation technique. This approach is however, only applicable for not too highly 
excited polyatomic molecules. Since the harmonic basis in principle forms a complete 
set, a simple overlap model in which the harmonic basis is projected onto the 
anharmonic asymptotically could be suggested. This method has recently been used 
successfully for energy transfer in the CF, molecule (Billing 1990). 

Some times the interaction can be approximated by a ‘nearest-neighbour’ coupling 
model, that is 

ihk,, = V, exp ( k i o t )  6,.,,r AInr.  (63) 
Here the coupling matrix can be diagonalized by an analytical transformation yielding 
(for example Billing 1975b) 

dt Vl(t)cos ot , (64) 1 A,,,. = J,,-,, ,  

where J ,  is a Bessel function. 
The CP method given so far has been based upon a symmetrized or detailed balance 

corrected Ehrenfest approach and we have seen that this to some extent is justified by 
the first-order expressions and/or the ‘eikonal’ derivation. The method combines the 
use of an average potential of the type (41) with an energy mapping (47), where U means 
the total classical energy. In the next section we wish to put the energy mapping, which 
so far has been an ad hoc correction to the CP theory, on a more firm theoretical 
ground. 
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320 G. D. Billing 

5. Connection to the time-dependent self-consistent field method 
It has recently been demonstrated (Muckerman et al. in press, Billing 1993a) that 

one can arrive at a CP theory by introducing a single-configuration SCF approach, 
that is by assuming a separability between coordinates r and R and introduce a trial 
function of the type 

w . 7  R, 4 = w 7  t)@(R, 0 7  (65) 

where r denote the vibrational coordinate of a diatomic molecule and R the 
translational coordinate for the relative motion. Introducing a Gaussian-type wave- 
packet (GWP) for the latter motion, that is 

@(R7 t)=exp i{y(t)+P(t)[R -R( t ) ]  +A( t ) [R-R( t ) I2 )  (66) r 
and inserting this the trial function in the TDSE 

h2 a* u(r)- -?+ Hl(r, R )  
at 2p d R  

where m is the reduced mass of the diatomic molecule and p the reduced mass for the 
motion of the atom A relative to the diatomic molecule BC. By equating terms of power 
@(R, t)[R - R(t)]"(n = 0,1,2), one obtains the following set of equations: 

where the angular brackets indicate integration over the coordinate r.  Furthermore the 
following equation for $(r, t )  was obtained: 

(72) w 
at 

ih -= F(t)+ + CHo + H I @ ,  R ( t ) ) l W ,  0, 

where F( t )  is a phase factor given by 

P(t)' ihA(t) 
2P P 

F(t) = y' - P(t)d(t)  + - - ~ 

and 
(73) 

(74) 

Using equations (68) and (71) we see that F(t)=O. Equation (72) can be solved by 
expanding in eigenstates to H ,  or by grid methods (see below). Expanding in 
eigenstates to H, we obtain 
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The classical path method 321 

where a,(t + - 00) =6,, and I denotes the initial internal state. Thus we see that the CP 
equations arises (from first principles) if a single-configuration SCF trial function is 
introduced and if the GWP description of the relative motion holds. However, it is 
important to realize that the GWP represents not only a spread in coordinate but also a 
spread in momentum space that is one is running all energies with one wavepacket. In 
order to extract information on the probability for a quantum transition I - F  at a 
given energy we should project the initial and final total wavefunction Y(r ,R , t )  
(t- k 00) on an incoming wave $,(r) exp ( - ik,R) and outgoing wave 1CIF(r) exp (+ ik,R) 
respectively. The transition probability is then obtained as a ratio of the outgoing and 
incoming fluxes, that is as 

where t-co, k, is the wavenumber given by 

and F k i n  a kinematic factor which quantum-mechanically would be Fkin = k,/k, but 
semiclassically (Muckerman et al.) is Fkin = P( - t)’/PZPF, where PI = hk,. The above 
projection is that normally used in wave-packet calculations (for example Jolicard and 
Billing 1991) but, if a GWP is assumed to hold at all times (and not only initially), then 
the integral can be evaluated analytically to give 

PI+,= (g~~~) ) )1 ’2exP{  - - d t ) [ P ( t ) - p F 1 2  + 9 ( - t ) [ P ( - - ) + p 1 1 2 }  FkinlaF(t)12 (78) 

where 

If the TDSE had been solved exactly instead of approximately by assuming a single 
SCF configuration and assuming a GWP at all times, then the above transition 
probability would be independent of the initial centre of the GWP P( - t )  = Po and of 
the initial width A( - t )  (Jolicard and Billing 1991). However, owing to the approxim- 
ations introduced in the solution method we cannot expect this to be the case for 
equation (78). Thus the transition probability will depend on these parameters but 
Muckerman et al. (in press) and Billing (1993a) have demonstrated that we can define 
optimum or best momentum PX (figure 3) such that the probability is independent of 
the width parameter a0, that is the best momentum is defined variationally by 

where m0 is most conveniently (from a numerical point of view) taken as the width at  the 
turning point (P(t=O)=O), that is such that Irn[A(t=O)]=a, and Re [A(t=O)]=O 
(Billing 1993a). It has turned out that the P t  defined variationally is at low energies very 
close to the arithmetic mean value, that is close to 

Thus this derivation (from first principles) gives not only the CP equations but also a 
natural definition of the initial momentum to be used, a momentum which we see is 
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0 

0.5 
a0 

0.0 
1 

-1 
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PO 

Figure 3. Variational determination of Po, the initial momentum in the CP theory (from 
Muckerman et al. (in press). The transition probability Po,  is independent of cc,(width of 
the wave packet for Po = P,*. 

otherwise not defined in the CP theory. Furthermore correction terms involving the 
width of the wave bracket arise. However, what is more important is that it gives an 
indication when the CP theory will break down, that is when the single-configuration 
approximation no longer holds. This is the case at higher energies when the two 
coordinates R and I are strongly mixed and hence the separability approximation 
invoked by the product-type wavefunction (65) is no longer valid. In order to improve 
the SCF approach, one can either introduce more configurations, that is use the 
multiconfiguration method or try to optimize or improve the single-configuration 
method. The latter can be done either by using a variational procedure to determine 
free parameters or by looking for coordinates where the separability is larger or a 
combination of the two methods. We have seen that the derivation of the CP equations 
given here does not invoke or assume a classical picture. Rather the quantum- 
mechanical equations of motion do give equations which are classical like and we have 
seen that the equations are best in the low-energy range, where the separability 
assumption is expected to hold and where the search from the best momentum 
converges fast. The CP equations are, however, as we have seen also valid in the other 
energy limit, that of high energies, where the transition probability becomes 
independent of the exact nature of the trajectory, that is when E - E ,  E E - E,. In the 
intermediate-energy range it is necessary to improve the method by looking for self- 
consistent trajectories, that is trajectories which are tied to a specific quantum 
transition. The variational CP method given in the present section is only one way of 
looking for self-consistent trajectories. Another approach which can be used is based 
upon a derivation given by Pechukas (1969) using the FP integral representation of 
quantum mechanics. 
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The classical path method 323 

6. Connection to the Feynman path method 
In the previous section we showed that the CP theory arises when the SCF trial 

wavefunction is mapped onto quantum-mechanical boundary conditions, that is no 
assumptions about a classical path was assumed. However, in the FP formulation of 
quantum mechanics (Feynman and Hibbs 1965) the classical limit arises naturally from 
the stationary phase of the path integral. What Pechukas (1969) suggested was then to 
treat part of the system (r) in an ordinary quantum-mechanical fashion while treating 
the R system within a path integral approach. By looking for the stationary phase, 
subject to the boundary conditions that the r system should start in a given quantum 
state I and end in F, an effective path was obtained, that is the stationary phase defines 
the ‘classical’ trajectory subject to quantum boundary conditions set by the transition 
that one considers. This specific trajectory is one which should be used as the ‘classical 
path’ when calculating the probability for a given transition. The self-consistent 
trajectories obtained in this manner lose the energy corresponding to the transition 
under consideration that is 

(82) 

Thus the classical part of the system will by the quantum boundary conditions see a 
system going from the initial state I to F with unit probability. However, when this 
trajectory is used in the CP equations for the quantum amplitudes (79 ,  we do of course 
not obtain unit probability for the transition. 

The stationary phase defines a trajectory R(t) which is obtained by using the 
effective potential 

where Re denotes the real value, the brackets ( ) denote an integration over r, t,bl(t, to) 
is a wavefunction evolving from the state I forward in time from to to t and $F (tl ,  t )  is a 
wavefunction evolving backwards in time from t to t starting in state F.  In a state 
expansion approach these wavefunctions are obtained by solving a set of equations (75) 
using R(t)  obtained from the Hamiltonian equations of motion: 

a K f f  P(t)= -~ 
aR ’ 

Since the effective potential is ‘non-local’, this can only be done iteratively and 
problems with convergence of the solution have occurred (Penner and Wallace 1973, 
1975, Jolicard 1984). It was later shown (Billing 1987b) that these self-consistent 
trajectories might be complex, that more than one solution often existed and that phase 
interference between the trajectories should then be taken into account. 

By considering the simple problem of a linearly forced oscillator, Billing (1987b) 
was able to suggest an alternative formulation of an effective potential which would 
lead to self-consistent trajectories, namely 

K f f  = VOW) +1?(IClI(4 t0)l Vl(r, R)lIClI(t? to)>, (86) 
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324 G. D. Billing 

where we have assumed that the interaction potential can be divided as follows: 

but Vo could eventually be absent. The parameter y is defined by 

E F  - El 
4 1  ’ 

q=- 

where 

We note that q = 1 gives the usual CP equations with the Ehrenfest averaged potential 
and that the energy lost by the classical degree of freedom is given as 

that is just as in the FP formulation of Pechukas. The above effective potential is, 
however, considerably simpler to use and also easier to generalize to more complicated 
systems. We note that the equations of motion still have to be solved iteratively since 
the denominator of y depends upon the whole trajectory from to  to t,. However, it is 
easy to make the iterative scheme converge using a Newton-Raphson search for the 
value of y for which self-consistency is obtained. Another important point is that the 
potential defined by equation (86) is actually the same as obtained in the previous 
section using the SCF method, but it contains the factor q, that is it involves a scaled 
Ehrenfest potential. Thus we see that yet another improvement in the single- 
configuration SCF approach involves the use of a variationally determined ‘SCF 
potential’. The advantages of the single-configuration approach over the multi- 
configuration method is that it provides the quantum basis for a mixed quantum- 
classical description and that the classical limit is easily obtained, but cases are known 
for which the simple single-configuration method fails and a multiconfiguration 
method should be introduced (for example Makri and Miller 1987a, b, and Kotler et al. 
1988, 1991). 

When the single-configuration method breaks down, it is then the standard 
procedure to introduce more configurations. However, a possible different avenue does 
exist, namely to look for quantum corrections to the SCF scheme. Such quantum 
corrections are those discussed in this and the previous sections; the first resulted in a 

Table 1.  Possible mixed quantum-classical methods in the treatment of three-body rearrange- 
ment processes using hyperspherical coordinates. 

p 4 6 y References 

Q Q Q Q Kupperman (1975), Kress et a/. (1990) 

Q Q Q C Markovic and Billing (1993) 
C Q Q Q Markovic and Billing (1994) 
C Q Q C Muckerman et al. (1988) 
C Q C C Jolicard et al. (1994) 
C C C C Johnson (1983), Gross and Billing (1993) 

Launay and Le Dourneuf (1990), Billing and Markovic (1993) 
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The classical path method 325 

variational determination of the best initial momentum and the second in a scaled 
Ehrenfest potential. Both methods introduce additional quantum aspects compared 
with the primitive SCF method. The advantage of this avenue is that the classical limit 
in terms of trajectories is still contained in the formulation. Yet another way of 
improving the SCF method is to look for variables where the system is separable (by 
nature) such that the product-type wavefunction can be assumed to hold. In this respect 
it is especially important not to introduce the separation between degrees of freedom, 
which are coupled strongly. Such modes should be treated within the same dynamic 
description (classically or quantally) before deciding how to partition the degrees of 
freedom. By changing the coordinates it is sometimes possible to make the system more 
separable. 

7. Reactive scattering 
As mentioned, it is sometimes desirable to introduce a special coordinate system 

before the SCF separation is made. An example of this is reactive scattering, where the 
various channels are strongly coupled in the transition state region. Hence one should 
look for variables which treat the reaction channels evenhandedly. Such coordinates 
are the hyperspherical coordinates (for example Johnson 1980, 1983a, b). A mixed 
quantum-classical description (table 1 )  of three-body rearrangement processes has 
been suggested (Muckerman et al. 1988, Markovic and Billing 1992a, b) using a 
classical mechanical treatment of for example the motion along the hyperradius and of 
the rotation of the hyperplane in space, that is of the Euler angles a, fl and y. The 
hyperspherical coordinates p, 6 and 6 are defined implicitly through the Jacobi 
coordinates. Thus the variables p, 8,6 specify the shape and size of the ABC triangle. Its 
orientation in space is given by three Euler angles mentioned above. Within these 
variables, one obtains the following (Johnson 1983a, b) Hamiltonian: 

where 

" h a  J =- 
id?' 

AV(p,f l )= --(A+-) h2 4 
2pp2 4 sin2(28) 

(93) 

(94) 

and J * are the raising and lowering operators working on the rotational wavefunctions 
DLK(ct,/3,y) in which the total wavefunction can be expanded. We note that the 
Hamiltonian is independent of the two Euler angles a and B. Hence the corresponding 
momenta are constants of motion J and M ,  respectively. Thus the complete quantum 
problem is four dimensional (4D) but by treating for example the motion along the 
hyperradius classically (by substituting the operator P ,  by its classical analogue it is 
possible to reduce the problem to a three-dimensional 3D quantum problem. 
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326 G. D. Billing 

Furthermore a classical treatment also of the Euler angles brings the problem down to 
a two-dimensional (2D) quantum-mechanical problem. Such problems are easily 
handled by grid methods (see below) and this approach then has the advantage that the 
problem can be solved for multisurface situations arising when non-adiabatic 
electronic transitions are of interest. The 2D quantum problem, where 8 and 4 are 
quantized can be shown asymptotically to correspond to a quantum treatment of the 
rotational and vibrational motion but a classical treatment of the rotational projection 
(magnetic) quantum number (Muckerman et al. 1988). One drawback of the 
hyperspherical coordinates is, however, that they are not appropriate asymptotic 
coordinates, that is one usually has to shift to other (e.g. Jacobi) coordinates when the 
hyperradius becomes large. How large depends upon the masses of the three particles. 
Ifthe wavefunction is known in the full 4D space, a projection onto other coordinates is 
no problem but, if a semiclassical approximation is used, the wavefunction is only 
represented in part of space, say 8 and 4. Then it becomes necessary to work with mixed 
Jacobi-hyperspherical coordinates in order to perform the asymptotic propagation 
(Muckerman et al. 1988, Markovic and Billing 1992a, b). If only the hyperangles 8 and 
4 are quantized we obtain a mixed quantum-classical Hamiltonian: 

P,(P, + 4iA cos 8 ala4) 
2pp2 sin2 8 

.f2 - P ;  
+ pP2 cos2 e [ 1 +sin 8 cos 2y)l. HI = (97) 

For p+co the Hamiltonian reduces to 

Hmixed(p-fGO)= -- 
2 h 2 ( a 2  p a x 2  x a x  a 4x2 1 

-+-+!)+ 1 p L p 2  ’ [l+cos(2y)], (98) 4s1n2q 4 px2sin2q 

where x is a vibrational coordinate x=2r /d i ,  di is a constant depending on the 
arrangement channel (Muckerman et af. 1988) and q is the angle between the diatom 
bond axis and the vector from the atom to the centre of mass of the diatom. The 
eigenfunction to the above equation is 

where P; is an associated Legendre polynomial with continuous value of v, that is 

The ‘adiabatic’ eigenfunctions to Z?, depend parametrically on the classical coordinate 
p, that is 

Ho(e,  4; ~ ) l c / n ( e ,  4; P)  = En(p)+n(e, 4; P I ,  (101) 
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The classical path method 327 

where n denote a vibrational-rotational state (qj). In the semiclassical approach the 
total wavefunction is expanded in these eigenfunctions: 

Inserting in the TDSE we obtain a set of coupled equations in the expansion 
coefficients, that is 

b m ( t ) =  -Can(t)exp [ i ~ n r n ( t ) ~  
n 

where 

The various vibrational-rotational states are coupled through A ,  and the non- 
adiabatic coupling term ($n]a/apl$rn).  For P,  values different from P ,  the eigen- 
functions to H ,  are not appropriate asymptotic eigenfunctions. Rather one should 
re-expand the total wavefunction in the eigenstates (99). 

8. Non-adiabatic transitions 
Non-adiabatic transitions involve more than a single electronic state and in this 

case the classical treatment of the ‘slow’ nuclear motion and a quantum treatment, of 
the ‘fast’ electronic motion becomes a natural and obvious procedure. Thus the 
quantumdassical approach for these types of problems dates back as mentioned in the 
introduction to the early days of quantum mechanics. For the electronic degrees of 
freedom we obtain a TDSE 

. a@@, t )  
at . HJr, R(t))@(r, t)=ih- 

The electronic wavefunction can be expanded for example in an adiabatic basis set as 

@(r, t )  U n ( t ) 4 n ( r ;  R) ~ X P  (106) 
n 

which yields a set of coupled equations in the expansion coefficients: 

ihci, =C am( 4nl - 
m 

The non-adiabatic coupling term can be written as 

So far the only assumption is that some path can be prescribed for the nuclear motion. 
However, the most important and intriguing point is which path. Tully and Preston 
(197l)mention in their original paper that they do not know how to solve this problem 
in general but refer to the self-consistent trajectory method of Pechukas (1969) as a 
possibility. Instead they suggest obtaining the trajectory from the following simple 
effective potential. 

b f = C  n Ian12En(R), (109 
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328 G. D. Billing 

where E ,  is an adiabatic energy surface. Initially the above expression is correct. The 
trajectory starts on one specific surface since (a,(t+ co) = dnI) but, as the amplitudes on 
some of the other surfaces grow, the trajectory ought to split in several components, 
each following a specific adiabatic surface. In general we cannot expect a single average 
path to be able to account correctly for the quantum electronic coherence connected 
with these processes. 

A method, in which the trajectory splitting is included is the trajectory surface 
hopping (TSH) method. In the TSH method the system evolves on an adiabatic 
potential surface and the trajectory is allowed to jump at the avoided crossings with a 
probability obtained either from a simple Landau-Zener expression (see $2) or from 
the squared amplitudes la,(t)12. After a transition, for example from a lower to an upper 
surface, the new classical momentum on the upper surface is readjusted so as to give 
energy conservation (Stine and Muckerman 1978, Miller and George 1972). The TSH 
method is easy to use but it is often based on the validity of the Landau-Zener 
probability and also that the transitions are sufficiently localized. In the complex- 
values time method due to Miller and George (1972) actual crossings between the 
adiabatic surfaces are searched for in complex coordinate space. In the high-energy 
limit the model is equivalent to the TSH method (Stine and Muckerman 1976). The 
formal advantage of the complex trajectory method is that it defines a Hamiltonian 
which brings the trajectory continuously from one surface to the next. However, in 
practical calculations it has been less useful since it requires knowledge about the 
potential energy surface in complex space and also a search for all-‘important’, that is 
contributing, paths and that interference effects between them are included properly. 

The TSH approach has been ‘generalized’ in a model proposed by Tully (1990). 
Here the system is allowed to switch from one surface (k)  to another ( j )  at any point 
along the trajectory according to the criterion 

where 5 is a random number between zero and unity. The time interval which is At 
integrated over, akk = lakI2 and the terms b, can be obtained from the CP equations 
(107) using the fact that 

1 bkj. 
j i k  

The model then assumes a sudden switch from one adiabatic surface to another just as 
the TSH method and the equations of motion during the infinitely narrow transition 
period are not known and hence not solved. A Hamiltonian which allows a gradual 
change can be obtained using the FP formulation (Webster et al. 1991) in a small time 
interval At, in which the transition is assumed to take place. Therefore, the trajectory 
may bifurcate in a number of paths and the procedure is only simple to use if 
interference effects between the various paths satisfying the quantum boundary 
conditions can be neglected (Billing 1987b). 

The FP formulation has also been used successfully to define a mean path by Freed 
(1975),Laing and Freed (1979) and Herman and Freed (1983). As mentioned previously, 
the problem with the trajectory obtained from the FP formulation is that the effective 
potential governing the nuclear motion is non-local, that is the equations of motion 
have to be solved iteratively. The iterative scheme can in some cases diverge and there 
may be more than one solution to the equations (Billing 1987b). However, if the FP 
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The classical path method 329 

formulation is considered in the short-time limit, it is possible to introduce suitable 
approximations for the transition amplitudes, which makes it easier to obtain the path. 
Consider for example a system with the Lagrangian 

where we wish to treat the r motion exactly and the R motion within a FP formulation. 
Thus we can introduce the reduced propagator (Pechukas 1969) as 

K,,(R, t; R’, t‘) = 6R(t) exp - Ldt” a,,(R(t)), s Gs:, 
where L is the Lagrangian given by 

1 
L = -R2 - VJR) 

2P 
and a,, is the amplitude for the n-to-m transition in the r system induced by the 
‘trajectory’ R(t). The semiclassical trajectory is then defined in the usual FP  sense as the 
solution to 

GS(R(t)) = 0, (1 15) 

where 

S = f dt”{L(d, R, t”) + h Zmln(a,,)]}, 
t’ 

where the imaginary part is taken so as to obtain a real trajectory. In cases where a,, is 
known analytically, it is then easy to obtain the effective potential governing the R 
motion. This is the case for solvable models such as the linearly forced harmonic 
oscillator (Billing 1987b). Also in the short-time limit it is possible to introduce a simple 
expression for the amplitude a,, using for example the Magnus (1 954) expansion where 

an,= (A1 exp( -; ( ~ ~ ( t ” ) d t ” ) [ & )  + higher-order terms (1 17) 

and 

h2 a 2  
H(t)= ----,+u(r)+ Vl(r,R(t)). 2m dr 

We have assumed that the interaction potential can be split in V(r, R)=  Vo(R) + Vl(r, R). 
In each time interval the matrix 

A(t, t’)= dt”(L - Vo -H) (1 19) s:. 
s 

is diagonalized and the reduced propagator obtained as 

K(R, t; R‘, t’) = 6R(t”) U exp (iD(t, t’))U’ (120) 

and 
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330 G. D. Billing 

Here we have used the notation V, = V,I, L = L(d, R,  t)I and H,, = (@,Ifil@,>. The 
path integral is evaluated by stationary phase method, that is 

~ n m  =C {d(~(t)) Unpexp ~iopp(t, t’11 u : p  (122) 

defines p paths by 

S i S p p l R = R p = O .  (123) 
For the two state cases (relevant for many non-adiabatic problems), one obtains (Laing 
and Freed 1979, Freed 1975, Herman and Freed 1983) that the trajectories are 
governed by the following two effective potentials: 

where 

a = 2  J dt” V12(t”)/ J dt”(Vl/,, - V2J, 
I’ f ’  

the vi denote the diabatic potential surface and the V,, denote the coupling between 
them. We notice that c( depends upon the trajectory for the entire time interval, that is 
the equations of motion are solved iteratively, but the iterative scheme for the equations 
of motion 

&# = - vv, ( 126) 
converges rapidly owing to the small time step taken. The stationary phase defines the 
trajectory and the path integral is evaluated by a second-order expansion around this 
trajectory (Feynman and Hibbs 1965). The combined Feynman-Magnus method has 
features common to the TSH method in that the transition takes place at specific times 
defined by the Magnus time intervals. The final result should then be independent of the 
size of these. This will obviously be the case for very small time steps where the Magnus 
expansion with only a single term included is accurate. In this limit it is possible to 
invoke the short-time approximation when evaluating the propagator K(x& xltl). 
However, for many-dimensional problems it becomes numerically cumbersome to 
work directly with the propagator. It is advantageous to propagate the wavefunction, 
that is to introduce the fact that 

4(x 2 ,  t 2 )- - 1 dx, K(~ztz;~l t l )4(~1, t l ) .  (127) 

For t2=t l  +At  we have (Makri and Miller 1987a, b) 

( 128) 
m ‘1’ imAx2 i At x2 

K(xzt2; x1 tll = (-) exp (~ 2hAt - -- ha,{., dx V(x) ) . 
2x1~7 At 

We note that the propagator is highly oscillatory in the limit At+ co. The integral (1 27) 
can be evaluated if a second-order expansion of the potential around x =$xl + x2) is 
introduced and if the wavefunction is expressed in a Fourier series, that is 
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The classical path method 33 1 

The result is 
1 

+(xz, t 1 + At) = ( ---)li2exp ( - At v(2)) dk exp ( - i8hXz), (1 30) l-aAtZ k 

where 

d, = Ck eXp ( - x * : / ( l  ih At -a At’)). 

We note that the last factor can be evaluated by performing the inverse Fourier 
transform with the coefficients ck replaced by dh and that the poor behaviour with 
respect to At has disappeared. Therefore it is advantageous to work directly with the 
propagation of the wavefunction itself rather than the propagator. Such propagation 
schemes will be discussed in the next section. 

9. Grid methods 
The possibility of introducing a discrete representation of the wavefunction on a 

grid and thereby being able easily to treat dissociative and reactive coordinates has 
been important for the further development of the classical path method. Furthermore, 
since in the grid as in the CP method one considers and solves the TDSE, grid methods 
makes it easy to introduce additional quantization, that is to quantize degrees of 
freedom which otherwise would have been treated classically. In this manner, one 
obtains an approach where classical mechanics is mixed with a quantum (operator or 
state expansion) technique and a quantum grid expansion (Billing 1991). 

Thus classical mechanics should be used for translational and rotational degrees of 
freedom (of heavy molecules), state (or quantum operator) expansion for electronic and 
vibrational degrees of freedom and grid methods for reactive or dissociative 
coordinates. 

The grid methods are based upon the evaluation of the kinetic energy terms by a fast 
Fourier transform (FFT) or a discrete variable representation methodology combined 
with a method for the time propagation, for example Kossloff, 1988, Feit et al. 1982 and 
Park and Light (1986). In grid methods, one obviously operates with a finite grid and a 
finite number of grid points. This gives some restrictions as far as the energy resolution 
and the physical dimensions of the system which can be studied. In order to avoid 
unphysical reflection near the boundaries, it is necessary to introduce an absorbing 
optical potential near the edges of the grid. Usually about 30% of the grid is used for the 
optical potential. Only with a reasonably soft optical potential is it possible to absorb 
both low- and high-energy components of a scattered wave packet (Neuhauser and 
Baer 1989). 

Thus considering a wavefunction +(x) on a grid from 0 to x,,, the wavefunction is 
represented on the grid as 

q!~~=+(x~), where xi=iAx+$Ax, i=0, ..., N - 1  (133) 
and Ax =xmax/N. Since the Hamiltonian may contain singular terms at the boundaries 
the grid points are shifted with $Ax. The Fourier transform is now given as (Press et al. 
1986) 
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332 G. D. Billing 

where j = O ,  2 , .  . . , N - 1. The wavenumbers are given by (Press et al. 1986) 

2rc i - N  
' Ax N '  

k.=-- i > $ N +  1.  

The derivatives of the wavefunction can easily be obtained by multiplying the fourier 
component ck with ki and making the inverse FFT. Once the effect of the momentum 
operators has been calculated at each grid point, we can propagate the solution in time 
by using for example the Lanczos reduction technique (Park and Light 1986). In the 
grid representation we can write the TDSE as 

ih#J = H4, (137) 
where 4 is a vector of length N containing the wavefunction at the N grid points and H 
is an N x N matrix. We now define a transformation matrix T which tridiagonalizes H: 

T=C40,41,,. . , 4 N - 1 1 .  (138) 
The vectors 4 k  where 4o is the initial wavefunction are found by using the Lanczos 
recursion scheme: 

H40=~04o+P141, (1 39) 

( 140) H 4 k = f l k 4 k -  1 + O l k 4 k  + f l k +  1 6 k  + 1, 

where k = 1 , .  . . . The transformation matrix T transforms H to a tridiagonal matrix of 
dimension L x L, where L is the number of recursions. This matrix is then diagonalized 
and the wavefunction at time t + A t  given as in 

+(t + At) = TS exp -- D At S+T+4(t), (141) ( t  1 
where S is the matrix diagonalizing the tridiagonal matrix and D is the diagonal matrix 
containing the eigenvalues. The advantage of the FFT method for evaluating the 
kinetic energy terms is that it scales favourably with the number N of grid points, 
namely as N log N .  However, at present it is not possible to treat more than a few (three 
to four) degrees of freedom in this manner. This appears also not be be necessary, since 
the grid methods have to be introduced only for the coordinates in which bond 
breaking or dissociation occur, that is situations where other methods as state 
expansion methods need a large number of continuum state in order to obtain 
convergence. Again the restrictions inherent in any quantum approach for molecular 
dynamics makes it necessary to invoke some approximations. Here the CP method is 
an obvious possibility since it introduces an approximate classical description for 
degrees of freedom which are difficult or even impossible to resolve experimentally. 
Thus these degrees of freedom should be averaged over by Monte Carlo technique; this 
is most easily done by running trajectories over the phase space in question. 
Furthermore the introduction of classical dynamics does in most cases not introduce 
any dynamic constraints in that part of the system which is described classically. Other 
methods which are based on a full quantum-mechanical description of the system must 
in order to obtain the same reduction in the complexity for the solution of the dynamic 
equations introduce approximations which may act as severe constraints on the 
dynamics (Billing 1993b, Gianturco et al. 1993). 
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10. Discussion and future development 
As mentioned above, the part of the system which is described by classical 

mechanics is described dynamically ‘correct’, where by correct we mean without 
constraints imposed on the Hamiltonian. However, to use classical dynamics is of 
course an approximate way of describing the system. Hence classically forbidden 
events are not accounted for properly, if at all. If one now quantizes that part of the 
system which is not described well by classical mechanics, one should think that an 
adequate approach is obtained. This philosophy is actually the one on which the CP  
method is based. However, the two dynamics are of such a different nature that the 
mere division of the system into two parts treated within different dynamics is itself an 
additional approximation. Thus it is not obvious how the dynamics of the two systems 
should be coupled together. We have seen that several possibilities exist; each of these 
define an effective potential which incorporates various aspects of the quantum- 
classical coupling. If the energy of the classical system is large, then the perturbation 
from the quantum subsystem on the dynamics may be negligible. Hence the effective 
potential can be taken as just V, (as for example defined in equation 86) and the classical 
dynamics are independent of the quantum system. In the opposite limit, at low energies, 
the system may be in the dynamically separable limit where we can introduce a single- 
configuration wavefunction and hence derive an Ehrenfest effective potential describ- 
ing the interaction combined with a variational determination of the momentum. In the 
intermediate-energy range where the classical and quantum systems are coupled 
strongly together we can use either the FP approach, which has to be solved iteratively, 
or a quantum-corrected SCF approach (Billing 1993a). However, it is also important to 
realize that the validity of the CP  approach can be extended by treating strongly 
coupled degrees of freedom within the same dynamic approach. Thus at low energies, 
rotational and vibrational motion should be quantized and the ‘SCF separability’ put 
between the translational and the internal motion. At higher energies the rotational 
and translational motion will be strongly coupled and hence these two degrees of 
freedom should be treated classically and the ‘SCF separation’ made between the 
vibrational degree of freedom and the other two. Thus it is possible to extend the range 
of validity of the SCF and the classical path method by this simple recipe. However, in 
some cases the situation is not so simple. For reactive scattering problems, vibrational 
degrees of freedom in one channel are translational in another and hence special 
coordinates which do not discriminate between the various arrangement channels have 
to be introduced before the separation is made. Even so the problem with the single- 
trajectory approach, which arises from the GWP SCF scheme, is that the path cannot 
bifurcate in situations where it should, that is when the quantum probability (the wave 
packet) in various physical distinct regions become large. This happens in reactive 
scattering problems and for electronic non-adiabatic transitions. In such cases there 
does not at present exist a completely satisfactory CP approach. A possibility is to 
introduce a multiconfiguration GWP SCF approach which would define more than 
one path. Future research in the development of the CP  theory should therefore deal 
with the above-mentioned situations in an attempt to extend the range of validity of the 
CP approach, without sacrificing the need for computational simplicity. 

Acknowledgment 
This research is supported by the Danish Natural Science Research Council. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



334 G. D. Billing 

References 
BILLING, G. D., 1973, J .  chem. Phys., 59,6147; 1975a, Chem. Phys. Lett., 30,391; 1975b, J .  chem. 

Phys., 62, 1480; 1976, Zbid., 64,908; 1980, Chem. Phys., 51,417; 1982, Ibid., 70,223; 1984a, 
Comput. Phys. Rep., 1,237; 1984b, Comput. Phys. Commun., 32,45; 1984c, J .  chem. Phys., 
84,2593; 1986, Chem. Phys., 112,95; 1987a, J .  chem. Phys., 86,2617; 1987b, Suif Sci., 203, 
257; 1990, J. chem. SOC., Faraday Trans., 86, 1663; 1991, Comp. Phys. Commun., 63, 38; 
1993a, J. chem. Phys., 99, 5849; 1993b, Chem. Phys., 173, 167. 

BILLING, G. D., and MARKOVIC, N., 1993, J. chem. Phys., 99, 2674. 
BOHR, N., 1948, D. Kgl. Danske Vidensk. Selskab, MatTfys. Medd., 18, 8. 
BYRON, F. W. Jr., 1971, Phys. Rev. A, 4, 1907. 
CHILD, M., 1974, Molecular Collision Theory (London: Acacemic Press). 
DELOS, J. B., THORSON, W. R., and KNUDSON, S. K., 1972, Phys. Re$ A, 6, 709. 
DELOS, J. B., and THORSON, W. R., 1972, Phys. Rev. A, 6, 720. 
FEIT, M. D., FLECK, J. A. Jr., and STEIGER, A., 1982, J. Comput. Phys., 47, 412. 
FEYNMAN, R. P., and HIBBS, A. R., 1965, Quantum Mechanics and Path Integrals (New York: 

FLANNERY, M. R., 1969, Phys. Rev., 183, 231. 
FREED, K. F., 1975, Chem. Phys., 10, 393. 
GIANTURCO, F. A., SERNA, S., PALMA, A., BILLING, G. D., and ZENEVICH, V., 1993, J. Phys. B, 26, 

GROSS, A., and BILLING, G. D., 1993, Chem. Phys., 173,393. 
HENRIKSEN, N. E., 1992, Chem. Phys. Lett., 197, 620. 
HERMAN, M. F., and FREED, K. F., 1983, J. chem. Phys., 78, 6010. 
JACKSON, J. M., and MOTT, N. F., 1932, Proc. R. SOC. A, 137, 703. 
JOHNSON, B. R., 1980, J .  chem. Phys., 73, 5051; 1983a, Zbid., 79, 1906; 1983b, Ibid., 79, 1916. 
JOLICARD, G., 1984, J .  chem. Phys., 80, 2476. 
JOLICARD, G., and BILLING, G. D., 1991, Chem. Phys., 149, 261. 
JOLICARD, G., GROSJEAN, A., and BILLING, G. D., 1994 (to be published). 
KOSSLOFF, R., 1988, J. phys. Chem., 92, 2087. 
KOTLER, Z., NITZAN, A., and KOSLOFF, R., 1988, Chern. Phys. Lett., 153, 483. 
KOTLER, Z., NERIA, E., and NITZAN, A,, 1991, Comput. Phys. Commun., 63, 243. 
KRESS, J. D., PACK, R.-T., and PARKER, G. A., 1990, Chern. Phys. Lett., 170, 306. 
KUPPERMAN, A., 1975, Chem. Phys. Lett., 32, 374. 
LAING, J. R., and FREED, K. F., 1979, Chem. Phys., 19, 91. 
LAUNAY, J. M., and LE DOURNEUF, M., 1990, Chem. Phys. Lett., 169,473. 
LEVINE, R. D., 1969, Quantum Mechanics ofMolecular Rate Processes (Oxford University Press). 
MAGNUS, W., 1954, Commun. pure appl. Math., 7, 649. 
MAKRI, N., and MILLER, W. H., 1987a, J. chem. Phys., 87,5781; 1987b, Chem. Phys. Lett., 139,lO. 
MARKOVIC, N.,and BILLING, G. D., 1992a, J. chem. Phys., 97,8201; 1992b, Chem. Phys. Lett., 195, 

MCCANN, K. J., and FLANNERY, M. R., 1973, J. chem. Phys., 63, 4695. 
MICHA, D. A,, 1983, J. chem. Phys., 78, 7138. 
 MILLER,^., Jr., 1968, Lie 'Theory and Special Functions (New York: Academic Press). 
MILLER, W. H., and GEORGE, T. F., 1972, J. chem. Phys., 56, 5637. 
MUCKERMAN, J. T., GILBERT, R. D., and BILLING, G. D., 1988, J. chem. Phys., 88, 4779. 
MUCKERMAN, J. T., KANFER, S., GILBERT, R. D., and BILLING, G. D. unpublished results. 
NEUHAUSER, D., and BAER, M., 1989, Chem. Phys. Lett., 195, 53. 
NYELAND, C., and BILLING, G. D., 1976, Chem. Phys., 13, 417. 
PARK, T. J., and LIGHT, J. C., 1986, J. chem. Phys., 85, 5870. 
PECHUKAS, P., 1969, Phys. Rev., 181, 166, 174. 
PECHUKAS, P., and LIGHT, J. C., 1966, J. chem. Phys., 44, 3897. 
PENNER, A. P., and WALLACE, R., 1973, Phys. Rev. A, 7, 1007; 1975, Zbid., 11, 149. 
PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., and VETTERING, W. T., 1986, Numerical Recipes 

RABITZ, H. A., and GORDON, R. G., 1970, J. chem. Phys., 53, 1815, 1831. 
RAPP, D., and KASSAL, T., 1969, Chem. Rev., 69, 61. 
SCHWARTZ, R. N., SLAWSKY, Z. I., and HERZFELD, K. F., 1952, J. chem. Phys., 20, 1591. 
SECREST, D., and JOHNSON, B. R., 1966, J. chem. Phys., 45, 4456. 

McGraw-Hill). 

1839. 

53; 1993, Chem. Phys., 173, 385; 1994,100, 1085; 1994. 

(Cambridge University Press). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The classical path method 335 

SIDIS, V., 1990, Adu. dt. molec. and opt. Phys., 26, 161. 
STINE, J. R., and MUCKERMAN, J. T., 1976, Chem. Phys. Lett., 44,46; 1978, J .  chem. Phys., 68,185. 
TULLY, J .  C., 1990, J .  chem. Phys., 93, 1061. 
TULLY, J. C., and PRESTON, R.  K., 1971, J .  chem. Phys., 55, 562. 
WARTELL, M. A., and CROSS, R. J. Jr., 1971, J .  chem. Phys., 55,4983. 
WEBSTER, F. ,  ROSSKY, P. J., and FRIESNER, R.  A., 1991, Comput. Phys. Commun., 63, 494. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


